Vegetation Response and Elevation Change in a Perturbed Hydrologic Regime: The Subsidy-Stress Gradient in a Peat-Based Floodplain Marsh

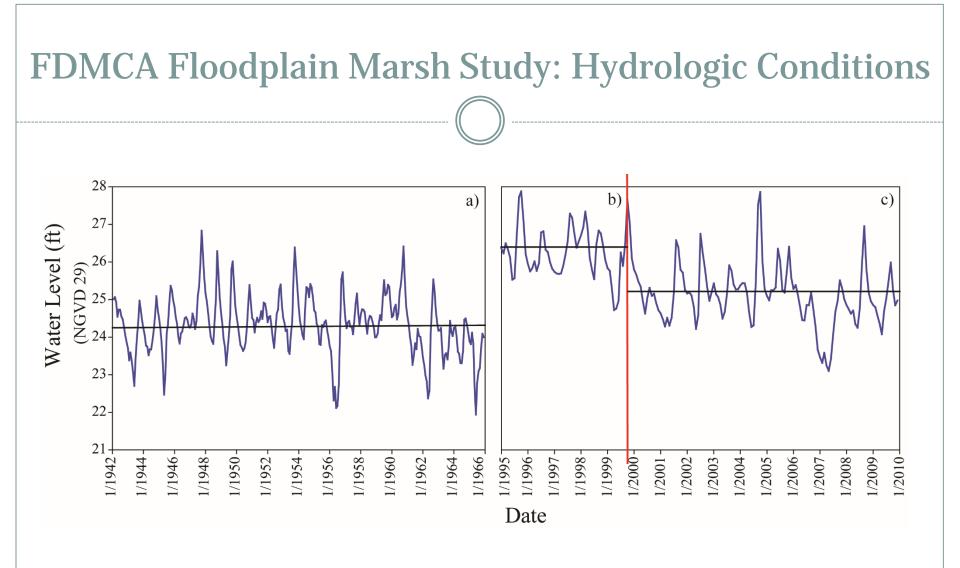
Angelique M.K. Bochnak, PhD, PWS¹; Sara A. Phelps; Kimberli J. Ponzio, PWS³

> ¹Environmental Consulting & Technology, Inc. ²University of Florida, Soil and Water Science ³St. Johns River Water Management District


2018 Biogeochemistry of Wetlands 12th International Symposium, Coral Springs, Florida

Wetlands and Flood Control

- Wetland restoration projects can provide additional values by flood control
 - To meet flood control objectives, wetland hydroperiods may be altered
- Conflicting management objectives
- Can we better manage wetlands in the wake of climate change for flood control, and additional functions/values?


Fort Drum Marsh Conservation Area (FDMCA)

- 20,600 acre component of the Upper St. Johns River Basin flood control project
 - Fort Drum floodplain marsh occupies 6,700 acres
- L79 construction in 1991

FDMCA Floodplain Marsh Study

- Evaluate the impact of L79 construction on FDMCA floodplain marsh
 - Vegetative community structure, soil characteristics, and elevation pre- and post- construction
- Study Questions
 - Impacts/changes to Herbaceous marsh community. Would we see a die-off, shifting to an open slough community?
 - Increase in invasive species colonization?
 - Impacts/changes to soil accretion rates?
 - What is the system response?

FDMCA Study: Elevation Survey

- Elevation measured in 1983, 2002, and 2007
 - Four cross sections bisecting marsh east-west
- 1983: traditional surveying techniques, supplemental depth soundings in 1994
- 2002 and 2007: RTK

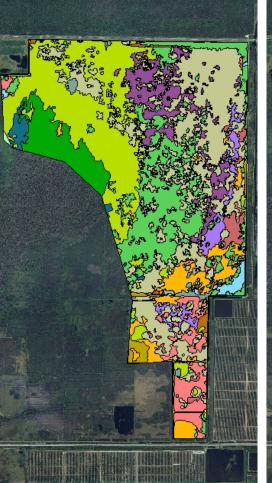
Transect	Number of Restricted Observations
Transect 1	4
Transect 2	5
Transect 3	6
Transect 4	8
Total	23

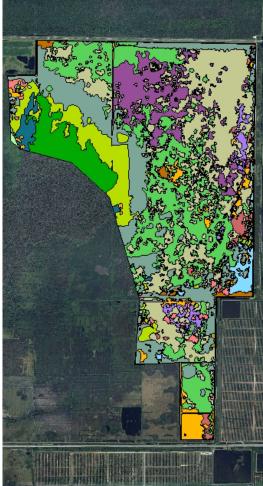
FDMCA Study: Elevation Survey

Transect	Number of Points	1983 Average Elevation (ft)	2002 Average Elevation (ft)	2007 Average Elevation (ft)	Change (ft)	Adjusted Elevation (ft)
1	4	23.1	24.1	23.6	0.5	24.2
3	6	23.5	23.7	24.0	0.5	24.6
2	6	22.7	23.1	23.7	1.0	24.3
4	8	22.7	25.0	24.8	2.1	25.4

FDMCA Floodplain Marsh Study: Vegetation Mapping

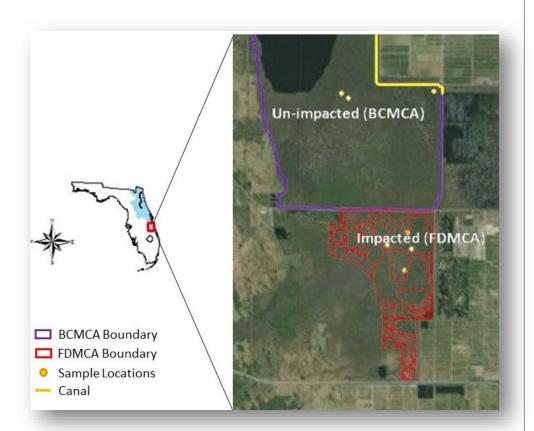
- Determined via remote sensing analysis using color infrared aerial photography (2001 and 2009)
- Vegetative community classifications
 - Herbaceous wetland (7 community types)
 - Shrub wetland (4 community types)
 - Forested wetland (2 community types)
 - Open water

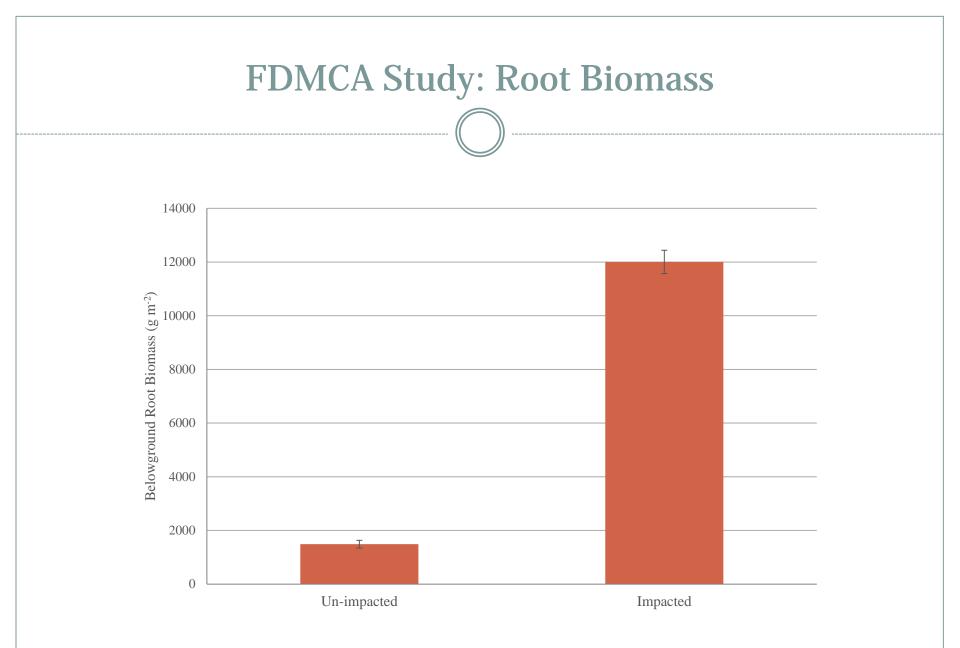

FDMCA Study Results: Vegetation Mapping


		2001	2008	Difference	
Category	Community Type	Acres	Acres	(2008-2001 acres)	%Change
Herbaceous V	Vetland				
]	Broadleaf Emergent (BE)	464	570	106	23
(Cattail (CT)	321	86	-235	-73
(Cattail/Sawgrass (CTSG)	103	86	-17	-17
(Grass/Sedge (GS)	378	249	-129	-34
I	Mixed Herbaceous (HM)	1112	1529	417	38
	Sawgrass (SG)	1873	1698	-175	-9
7	Water Lily Slough (WL)	179	117	-62	-35
He	rbaceous Wetland Total	4431	4335	-96	-2
Shrub Wetlan	ıd				
]	Ludwigia (LU)	1491	470	-1021	-68
I	Mixed Shrub (MS)	51	1169	1118	2207
r	Fransitional Shrub (TS)	91	29	-62	-69
7	Willow Swamp (WS)	47	69	21	45
	Shrub Wetland Total	1680	1736	57	3
Forested Wet	land				
	Cypress Swamp (CY)	73	88	16	22
]	Hardwood Swamp (HS)	398	368	-30	-7
	Forested Wetland Total	471	457	-14	-3
Open Water					
	Open Water (OW)	71	125	54	76

FDMCA Study Results: Vegetation Mapping

Herbaceous Wetland





FDMCA Study: Soil Characteristics and Root Biomass

- 4 stations sampled in FDMCA floodplain, 1 station sampled in BCMCA
- Three replicate soil cores collected from each station in May 2009
 - Analyzed for bulk density, C, N, and P
- Three replicate deep soil cores for belowground root biomass in May 2009
 - Dry weight biomass (g/m²)

FDMCA Study: Soil Characteristics

	Bulk Density				
Study	(g/cm ³)	$TP(g/m^2)$	$TN (g/m^2)$	TC (g/m ²)	OC (g/m ²)
Blue Cypress Marsh	0.079 ± 0.002	5.3 ± 0.15	242 ± 7.1	3,972 ± 117	3,734 ± 110
Fort Drum Marsh	0.058 ± 0.0009	5.3 ± 0.08	165 ± 2.9	2,842 ± 45	2,692 ± 43

Discussion

- To overcome the stress of extended hydroperiods, the plant community responded by increasing belowground biomass production
 - Increase in the surface elevation to a level that is more reflective of historic hydroperiods that meet plant community needs
- Disturbance < plant community tolerance level
 - What is new optimal condition?

Discussion

- From a management perspective, this means that FDMCA marsh is not managed at inappropriate water levels
 - Historic surface elevations and water levels compared to current levels suggest that optimal conditions have been reached
- Implications for managing for climate change?

Questions?

Special thanks to the SJRWMD for data used in this presentation